1HQT

THE CRYSTAL STRUCTURE OF AN ALDEHYDE REDUCTASE Y50F MUTANT-NADP COMPLEX AND ITS IMPLICATIONS FOR SUBSTRATE BINDING


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.20 Å
  • R-Value Free: 0.296 
  • R-Value Work: 0.212 
  • R-Value Observed: 0.213 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.6 of the entry. See complete history


Literature

The Crystal Structure of an Aldehyde Reductase Y50F Mutant-NADP Complex and its Implications for Substrate Binding

Ye, Q.Hyndman, D.Green, N.C.Li, L.Jia, Z.Flynn, T.G.

(2001) Chem Biol Interact 132: 651-658

  • DOI: https://doi.org/10.1016/s0009-2797(00)00256-8
  • Primary Citation of Related Structures:  
    1HQT

  • PubMed Abstract: 

    In order to understand more fully the structural features of aldo-keto reductases (AKRs) that determine their substrate specificities it would be desirable to obtain crystal structures of an AKR with a substrate at the active site. Unfortunately the reaction mechanism does not allow a binary complex between enzyme and substrate and to date ternary complexes of enzyme, NADP(H) and substrate or product have not been achieved. Previous crystal structures, in conjunction with numerous kinetic and theoretical analyses, have led to the general acceptance of the active site tyrosine as the general acid-base catalytic residue in the enzyme. This view is supported by the generation of an enzymatically inactive site-directed mutant (tyrosine-48 to phenylalanine) in human aldose reductase [AKR1B1]. However, crystallization of this mutant was unsuccessful. We have attempted to generate a trapped cofactor/substrate complex in pig aldehyde reductase [AKR1A2] using a tyrosine 50 to phenylalanine site-directed mutant. We have been successful in the generation of the first high resolution binary AKR-Y50F:NADP(H) crystal structure, but we were unable to generate any ternary complexes. The binary complex was refined to 2.2A and shows a clear lack of density due to the missing hydroxyl group. Other residues in the active site are not significantly perturbed when compared to other available reductase structures. The mutant binds cofactor (both oxidized and reduced) more tightly but shows a complete lack of binding of the aldehyde reductase inhibitor barbitone as determined by fluorescence titrations. Attempts at substrate addition to the active site, either by cocrystallization or by soaking, were all unsuccessful using pyridine-3-aldehyde, 4-carboxybenzaldehyde, succinic semialdehyde, methylglyoxal, and other substrates. The lack of ternary complex formation, combined with the significant differences in the binding of barbitone provides some experimental proof of the proposal that the hydroxyl group on the active site tyrosine is essential for substrate binding in addition to its major role in catalysis. We propose that the initial event in catalysis is the binding of the oxygen moiety of the carbonyl-group of the substrate through hydrogen bonding to the tyrosine hydroxyl group.


  • Organizational Affiliation

    Department of Biochemistry, Queen's University, Kingston, K7L 3N6, Ontario, Canada.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
ALDEHYDE REDUCTASE326Sus scrofaMutation(s): 1 
EC: 1.1.1.2
UniProt
Find proteins for P50578 (Sus scrofa)
Explore P50578 
Go to UniProtKB:  P50578
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP50578
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
NAP
Query on NAP

Download Ideal Coordinates CCD File 
B [auth A]NADP NICOTINAMIDE-ADENINE-DINUCLEOTIDE PHOSPHATE
C21 H28 N7 O17 P3
XJLXINKUBYWONI-NNYOXOHSSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.20 Å
  • R-Value Free: 0.296 
  • R-Value Work: 0.212 
  • R-Value Observed: 0.213 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 53.29α = 90
b = 70.12β = 90
c = 92.72γ = 90
Software Package:
Software NamePurpose
EPMRphasing
CNSrefinement
MAR345data collection
SCALEPACKdata scaling

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2001-05-16
    Type: Initial release
  • Version 1.1: 2008-04-27
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2017-10-04
    Changes: Refinement description
  • Version 1.4: 2021-10-27
    Changes: Database references, Derived calculations
  • Version 1.5: 2024-02-07
    Changes: Data collection
  • Version 1.6: 2024-04-03
    Changes: Refinement description