1U81

Delta-17 Human ADP Ribosylation Factor 1 Complexed with GDP


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 11 
  • Conformers Submitted: 11 
  • Selection Criteria: all calculated structures submitted 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Conformational changes in human Arf1 on nucleotide exchange and deletion of membrane-binding elements.

Seidel, R.D.Amor, J.C.Kahn, R.A.Prestegard, J.H.

(2004) J Biol Chem 279: 48307-48318

  • DOI: https://doi.org/10.1074/jbc.M402109200
  • Primary Citation of Related Structures:  
    1U81

  • PubMed Abstract: 

    Conformational changes associated with nucleotide exchange or truncation of the N-terminal alpha-helix of human Arf1 have been investigated by using forms of easily acquired NMR data, including residual dipolar couplings and amide proton exchange rates. ADP-ribosylation factors (Arfs) are 21-kDa GTPases that regulate aspects of membrane traffic in all eukaryotic cells. An essential component of the biological actions of Arfs is their ability to reversibly bind to membranes, a process that involves exposure of the myristoylated N-terminal amphipathic alpha-helix upon activation and GTP binding. Deletion of this helix results in a protein, termed Delta17Arf1, that has a reduced affinity for GDP and the ability to bind GTP in the absence of lipids or detergents. Previous studies, comparing crystal structures for Arf1.GDP and Delta17Arf1.GTP, identified several regions of structural variation and suggested that these be associated with nucleotide exchange rather than removal of the N-terminal helix. However, separation of conformational changes because of nucleotide binding and N-terminal truncation cannot be addressed in comparing these structures, because both the bound nucleotide and the N terminus differ. Resolving the two effects is important as any structural changes involving the N terminus may represent membrane-mediated conformational adjustments that precede GTP binding. Results from NMR experiments presented here on Arf1.GDP and Delta17Arf1.GDP in solution reveal substantial structural differences that can only be associated with N-terminal truncation.


  • Organizational Affiliation

    Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
ADP-ribosylation factor 1164Homo sapiensMutation(s): 0 
Gene Names: Arf1
UniProt & NIH Common Fund Data Resources
Find proteins for P84077 (Homo sapiens)
Explore P84077 
Go to UniProtKB:  P84077
PHAROS:  P84077
GTEx:  ENSG00000143761 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP84077
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 2 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
GDP
Query on GDP

Download Ideal Coordinates CCD File 
C [auth A]GUANOSINE-5'-DIPHOSPHATE
C10 H15 N5 O11 P2
QGWNDRXFNXRZMB-UUOKFMHZSA-N
MG
Query on MG

Download Ideal Coordinates CCD File 
B [auth A]MAGNESIUM ION
Mg
JLVVSXFLKOJNIY-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 11 
  • Conformers Submitted: 11 
  • Selection Criteria: all calculated structures submitted 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2004-10-05
    Type: Initial release
  • Version 1.1: 2008-04-30
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance