Macromolecule Annotations for the Entities in PDB 1RYP

Domain Annotation: SCOP Classification SCOP Database (version: 1.75) Homepage

Chains Domain Info Class Fold Superfamily Family Domain Species
H d1ryph_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome beta subunit (catalytic) Baker's yeast (Saccharomyces cerevisiae) [TaxId: 4932]
I d1rypi_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome beta subunit (catalytic) Baker's yeast (Saccharomyces cerevisiae) [TaxId: 4932]
J d1rypj_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome beta subunit (catalytic) Baker's yeast (Saccharomyces cerevisiae) [TaxId: 4932]
K d1rypk_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome beta subunit (catalytic) Baker's yeast (Saccharomyces cerevisiae) [TaxId: 4932]
L d1rypl_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome beta subunit (catalytic) Baker's yeast (Saccharomyces cerevisiae) [TaxId: 4932]
M d1rypm_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome beta subunit (catalytic) Baker's yeast (Saccharomyces cerevisiae) [TaxId: 4932]
N d1rypn_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome beta subunit (catalytic) Baker's yeast (Saccharomyces cerevisiae) [TaxId: 4932]
V d1rypv_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome beta subunit (catalytic) Baker's yeast (Saccharomyces cerevisiae) [TaxId: 4932]
W d1rypw_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome beta subunit (catalytic) Baker's yeast (Saccharomyces cerevisiae) [TaxId: 4932]
X d1rypx_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome beta subunit (catalytic) Baker's yeast (Saccharomyces cerevisiae) [TaxId: 4932]
Y d1rypy_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome beta subunit (catalytic) Baker's yeast (Saccharomyces cerevisiae) [TaxId: 4932]
Z d1rypz_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome beta subunit (catalytic) Baker's yeast (Saccharomyces cerevisiae) [TaxId: 4932]
1 d1ryp1_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome beta subunit (catalytic) Baker's yeast (Saccharomyces cerevisiae) [TaxId: 4932]
2 d1ryp2_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome beta subunit (catalytic) Baker's yeast (Saccharomyces cerevisiae) [TaxId: 4932]
A d1rypa_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome alpha subunit (non-catalytic) Baker's yeast (Saccharomyces cerevisiae) [TaxId: 4932]
B d1rypb_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome alpha subunit (non-catalytic) Baker's yeast (Saccharomyces cerevisiae) [TaxId: 4932]
C d1rypc_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome alpha subunit (non-catalytic) Baker's yeast (Saccharomyces cerevisiae) [TaxId: 4932]
D d1rypd_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome alpha subunit (non-catalytic) Baker's yeast (Saccharomyces cerevisiae) [TaxId: 4932]
E d1rype_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome alpha subunit (non-catalytic) Baker's yeast (Saccharomyces cerevisiae) [TaxId: 4932]
F d1rypf_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome alpha subunit (non-catalytic) Baker's yeast (Saccharomyces cerevisiae) [TaxId: 4932]
G d1rypg_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome alpha subunit (non-catalytic) Baker's yeast (Saccharomyces cerevisiae) [TaxId: 4932]
O d1rypo_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome alpha subunit (non-catalytic) Baker's yeast (Saccharomyces cerevisiae) [TaxId: 4932]
P d1rypp_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome alpha subunit (non-catalytic) Baker's yeast (Saccharomyces cerevisiae) [TaxId: 4932]
Q d1rypq_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome alpha subunit (non-catalytic) Baker's yeast (Saccharomyces cerevisiae) [TaxId: 4932]
R d1rypr_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome alpha subunit (non-catalytic) Baker's yeast (Saccharomyces cerevisiae) [TaxId: 4932]
S d1ryps_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome alpha subunit (non-catalytic) Baker's yeast (Saccharomyces cerevisiae) [TaxId: 4932]
T d1rypt_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome alpha subunit (non-catalytic) Baker's yeast (Saccharomyces cerevisiae) [TaxId: 4932]
U d1rypu_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome alpha subunit (non-catalytic) Baker's yeast (Saccharomyces cerevisiae) [TaxId: 4932]

Domain Annotation: CATH CATH Database (version 4.0.0) Homepage

Chains Domain Class Architecture Topology Homology
1 1ryp100 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1
2 1ryp200 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1
A 1rypA00 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1
B 1rypB00 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1
C 1rypC00 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1
D 1rypD00 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1
E 1rypE00 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1
F 1rypF00 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1
G 1rypG00 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1
H 1rypH00 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1
I 1rypI00 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1
J 1rypJ00 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1
K 1rypK00 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1
L 1rypL00 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1
M 1rypM00 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1
N 1rypN00 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1
O 1rypO00 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1
P 1rypP00 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1
Q 1rypQ00 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1
R 1rypR00 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1
S 1rypS00 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1
T 1rypT00 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1
U 1rypU00 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1
V 1rypV00 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1
W 1rypW00 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1
X 1rypX00 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1
Y 1rypY00 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1
Z 1rypZ00 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1

Protein Family Annotation Pfam Database Homepage

Chains Pfam Accession Pfam Identifier Pfam Description Type Source
E PF10584 Proteasome_A_N Proteasome subunit A N-terminal signature Domain This domain is conserved in the A subunits of the proteasome complex proteins. PFAM PF10584
A PF10584 Proteasome_A_N Proteasome subunit A N-terminal signature Domain This domain is conserved in the A subunits of the proteasome complex proteins. PFAM PF10584
K PF00227 Proteasome Proteasome subunit Domain The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1]. PFAM PF00227
J PF00227 Proteasome Proteasome subunit Domain The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1]. PFAM PF00227
1 PF00227 Proteasome Proteasome subunit Domain The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1]. PFAM PF00227
D PF00227 Proteasome Proteasome subunit Domain The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1]. PFAM PF00227
C PF10584 Proteasome_A_N Proteasome subunit A N-terminal signature Domain This domain is conserved in the A subunits of the proteasome complex proteins. PFAM PF10584
D PF10584 Proteasome_A_N Proteasome subunit A N-terminal signature Domain This domain is conserved in the A subunits of the proteasome complex proteins. PFAM PF10584
B PF00227 Proteasome Proteasome subunit Domain The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1]. PFAM PF00227
H PF00227 Proteasome Proteasome subunit Domain The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1]. PFAM PF00227
G PF00227 Proteasome Proteasome subunit Domain The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1]. PFAM PF00227
I PF12465 Pr_beta_C Proteasome beta subunits C terminal Family
G PF10584 Proteasome_A_N Proteasome subunit A N-terminal signature Domain This domain is conserved in the A subunits of the proteasome complex proteins. PFAM PF10584
F PF10584 Proteasome_A_N Proteasome subunit A N-terminal signature Domain This domain is conserved in the A subunits of the proteasome complex proteins. PFAM PF10584
B PF10584 Proteasome_A_N Proteasome subunit A N-terminal signature Domain This domain is conserved in the A subunits of the proteasome complex proteins. PFAM PF10584
L PF00227 Proteasome Proteasome subunit Domain The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1]. PFAM PF00227
F PF00227 Proteasome Proteasome subunit Domain The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1]. PFAM PF00227
2 PF00227 Proteasome Proteasome subunit Domain The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1]. PFAM PF00227
A PF00227 Proteasome Proteasome subunit Domain The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1]. PFAM PF00227
I PF00227 Proteasome Proteasome subunit Domain The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1]. PFAM PF00227
E PF00227 Proteasome Proteasome subunit Domain The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1]. PFAM PF00227
C PF00227 Proteasome Proteasome subunit Domain The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1]. PFAM PF00227

Gene Product Annotation Gene Ontology Consortium Homepage

Chains Polymer Molecular Function Biological Process Cellular Component
A,O 20S PROTEASOME (1RYP:A,O)
B,P 20S PROTEASOME (1RYP:B,P)
C,Q 20S PROTEASOME (1RYP:C,Q)
D,R 20S PROTEASOME (1RYP:D,R)
E,S 20S PROTEASOME (1RYP:E,S)
F,T 20S PROTEASOME (1RYP:F,T)
G,U 20S PROTEASOME (1RYP:G,U)
H,V 20S PROTEASOME (1RYP:H,V)
I,W 20S PROTEASOME (1RYP:I,W)
J,X 20S PROTEASOME (1RYP:J,X)
K,Y 20S PROTEASOME (1RYP:K,Y)
L,Z 20S PROTEASOME (1RYP:L,Z)
1,M 20S PROTEASOME (1RYP:1,M)
2,N 20S PROTEASOME (1RYP:2,N)

Protein Modification Annotation

Type PDB Residue Nr. Description