POP-OUT | CLOSE

An Information Portal to 107754 Biological Macromolecular Structures

Structure of Thermus thermophilus 30s ribosome
Biology and Chemistry Report
4BYB
  •   Structure Details   Hide

    Structure Keywords

    Keywords RIBOSOME
    Text RIBOSOME, TOXIN-ANTITOXIN, RIBOSOME-DEPENDENT NUCLEASE, MRNA DEGRADATION, TRANSLATION REGULATION

    Polymeric Molecules

    Chain A
    Description RNA (1504-MER) 
    Nonstandard Linkage no 
    Nonstandard Monomers no 
    Polymer Type polyribonucleotide 
    Formula Weight 488391.0 
    Source Method synthetic  
    Chain J
    Description 30S RIBOSOMAL PROTEIN S10 
    Nonstandard Linkage no 
    Nonstandard Monomers no 
    Polymer Type polypeptide(L) 
    Formula Weight 11955.0 
    Source Method natural source  
    Chain K
    Description 30S RIBOSOMAL PROTEIN S11 
    Nonstandard Linkage no 
    Nonstandard Monomers no 
    Polymer Type polypeptide(L) 
    Formula Weight 13737.9 
    Source Method natural source  
    Chain L
    Description 30S RIBOSOMAL PROTEIN S12 
    Nonstandard Linkage no 
    Nonstandard Monomers no 
    Polymer Type polypeptide(L) 
    Formula Weight 14637.4 
    Source Method natural source  
    Chain M
    Description 30S RIBOSOMAL PROTEIN S13 
    Nonstandard Linkage no 
    Nonstandard Monomers no 
    Polymer Type polypeptide(L) 
    Formula Weight 14338.9 
    Source Method natural source  
    Chain N
    Description 30S RIBOSOMAL PROTEIN S14 TYPE Z 
    Nonstandard Linkage no 
    Nonstandard Monomers no 
    Polymer Type polypeptide(L) 
    Formula Weight 7158.7 
    Source Method natural source  
    Chain O
    Description 30S RIBOSOMAL PROTEIN S15 
    Nonstandard Linkage no 
    Nonstandard Monomers no 
    Polymer Type polypeptide(L) 
    Formula Weight 10578.4 
    Source Method natural source  
    Chain P
    Description 30S RIBOSOMAL PROTEIN S16 
    Nonstandard Linkage no 
    Nonstandard Monomers no 
    Polymer Type polypeptide(L) 
    Formula Weight 10410.0 
    Source Method natural source  
    Chain Q
    Description 30S RIBOSOMAL PROTEIN S17 
    Nonstandard Linkage no 
    Nonstandard Monomers no 
    Polymer Type polypeptide(L) 
    Formula Weight 12325.7 
    Source Method natural source  
    Chain R
    Description 30S RIBOSOMAL PROTEIN S18 
    Nonstandard Linkage no 
    Nonstandard Monomers no 
    Polymer Type polypeptide(L) 
    Formula Weight 10258.3 
    Source Method natural source  
    Chain S
    Description 30S RIBOSOMAL PROTEIN S19 
    Nonstandard Linkage no 
    Nonstandard Monomers no 
    Polymer Type polypeptide(L) 
    Formula Weight 10605.5 
    Source Method natural source  
    Chain B
    Description 30S RIBOSOMAL PROTEIN S2 
    Nonstandard Linkage no 
    Nonstandard Monomers no 
    Polymer Type polypeptide(L) 
    Formula Weight 29317.7 
    Source Method natural source  
    Chain T
    Description 30S RIBOSOMAL PROTEIN S20 
    Nonstandard Linkage no 
    Nonstandard Monomers no 
    Polymer Type polypeptide(L) 
    Formula Weight 11736.1 
    Source Method natural source  
    Chain U
    Description 30S RIBOSOMAL PROTEIN THX 
    Nonstandard Linkage no 
    Nonstandard Monomers no 
    Polymer Type polypeptide(L) 
    Formula Weight 3350.0 
    Source Method natural source  
    Chain V
    Description RNA (77-MER) 
    Nonstandard Linkage no 
    Nonstandard Monomers yes 
    Polymer Type polyribonucleotide 
    Formula Weight 24816.8 
    Source Method synthetic  
    Chain W
    Description RNA (77-MER) 
    Nonstandard Linkage no 
    Nonstandard Monomers no 
    Polymer Type polyribonucleotide 
    Formula Weight 24802.8 
    Source Method synthetic  
    Chain X
    Description 5'-R(*GP*GP*CP*AP*AP*GP*GP*AP*GP*GP*UP*AP*AP*AP *AP*AP*UP*G U2M A2M A2MP*AP*AP*AP*A)-3' 
    Nonstandard Linkage no 
    Nonstandard Monomers yes 
    Polymer Type polyribonucleotide 
    Formula Weight 8246.1 
    Source Method synthetic  
    Chain Y,Z
    Description TOXIN OF THE YOEB-YEFM TOXIN-ANTITOXIN SYSTEM 
    Nonstandard Linkage no 
    Nonstandard Monomers no 
    Polymer Type polypeptide(L) 
    Formula Weight 10233.7 
    Source Method genetically manipulated  
    Entity Name TOXIN RELE 
    Chain C
    Description 30S RIBOSOMAL PROTEIN S3 
    Nonstandard Linkage no 
    Nonstandard Monomers no 
    Polymer Type polypeptide(L) 
    Formula Weight 26751.1 
    Source Method natural source  
    Chain D
    Description 30S RIBOSOMAL PROTEIN S4 
    Nonstandard Linkage no 
    Nonstandard Monomers no 
    Polymer Type polypeptide(L) 
    Formula Weight 24373.4 
    Source Method natural source  
    Chain E
    Description 30S RIBOSOMAL PROTEIN S5 
    Nonstandard Linkage no 
    Nonstandard Monomers no 
    Polymer Type polypeptide(L) 
    Formula Weight 17583.4 
    Source Method natural source  
    Chain F
    Description 30S RIBOSOMAL PROTEIN S6 
    Nonstandard Linkage no 
    Nonstandard Monomers no 
    Polymer Type polypeptide(L) 
    Formula Weight 11988.8 
    Source Method natural source  
    Entity Name TS9 
    Chain G
    Description 30S RIBOSOMAL PROTEIN S7 
    Nonstandard Linkage no 
    Nonstandard Monomers no 
    Polymer Type polypeptide(L) 
    Formula Weight 18051.0 
    Source Method natural source  
    Chain H
    Description 30S RIBOSOMAL PROTEIN S8 
    Nonstandard Linkage no 
    Nonstandard Monomers no 
    Polymer Type polypeptide(L) 
    Formula Weight 15868.6 
    Source Method natural source  
    Chain I
    Description 30S RIBOSOMAL PROTEIN S9 
    Nonstandard Linkage no 
    Nonstandard Monomers no 
    Polymer Type polypeptide(L) 
    Formula Weight 14410.6 
    Source Method natural source  

     
  •   Protein Details   Hide

    UniProtKB Information

    Chain SWS/UNP ID SWS/UNP Accession(s)

    C: Cellular Location | F: Molecular Function | P: Biological Process
    Chain B
    GO ID   Ontology GO Term Definition
    6412   Translation  The Cellular Metabolic Process in Which a Protein Is Formed Using the Sequence of a Mature MRNA Molecule to Specify the Sequence of Amino Acids in a Polypeptide Chain. Translation Is Mediated by the Ribosome and Begins with the Formation of a Ternary Complex Between Aminoacylated Initiator Methionine TRNA GTP and Initiation Factor 2 Which Subsequently Associates with the Small Subunit of the Ribosome and an Mrna. Translation Ends with the Release of a Polypeptide Chain From the Ribosome. 
    5622   Intracellular  The Living Contents of a Cell; the Matter Contained Within (but Not Including) the Plasma Membrane Usually Taken to Exclude Large Vacuoles and Masses of Secretory or Ingested Material. in Eukaryotes It Includes the Nucleus and Cytoplasm. 
    5840   Ribosome  An Intracellular Organelle About 200 a in Diameter Consisting of RNA and Protein. It Is the Site of Protein Biosynthesis Resulting From Translation of Messenger RNA (mrna). It Consists of Two Subunits One Large and One Small Each Containing Only Protein and Rna. Both the Ribosome and Its Subunits Are Characterized by Their Sedimentation Coefficients Expressed in Svedberg Units (symbol: S). Hence the Prokaryotic Ribosome (70s) Comprises a Large (50s) Subunit and a Small (30s) Subunit While the Eukaryotic Ribosome (80s) Comprises a Large (60s) Subunit and a Small (40s) Subunit. Two Sites On the Ribosomal Large Subunit Are Involved in Translation Namely the Aminoacyl Site (a Site) and Peptidyl Site (p Site). Ribosomes From Prokaryotes Eukaryotes Mitochondria and Chloroplasts Have Characteristically Distinct Ribosomal Proteins. 
    15935   Small Ribosomal Subunit  The Smaller of the Two Subunits of a Ribosome. 
    3735   Structural Constituent of Ribosome  The Action of a Molecule That Contributes to the Structural Integrity of the Ribosome. 
    Chain C
    GO ID   Ontology GO Term Definition
    6412   Translation  The Cellular Metabolic Process in Which a Protein Is Formed Using the Sequence of a Mature MRNA Molecule to Specify the Sequence of Amino Acids in a Polypeptide Chain. Translation Is Mediated by the Ribosome and Begins with the Formation of a Ternary Complex Between Aminoacylated Initiator Methionine TRNA GTP and Initiation Factor 2 Which Subsequently Associates with the Small Subunit of the Ribosome and an Mrna. Translation Ends with the Release of a Polypeptide Chain From the Ribosome. 
    5622   Intracellular  The Living Contents of a Cell; the Matter Contained Within (but Not Including) the Plasma Membrane Usually Taken to Exclude Large Vacuoles and Masses of Secretory or Ingested Material. in Eukaryotes It Includes the Nucleus and Cytoplasm. 
    5840   Ribosome  An Intracellular Organelle About 200 a in Diameter Consisting of RNA and Protein. It Is the Site of Protein Biosynthesis Resulting From Translation of Messenger RNA (mrna). It Consists of Two Subunits One Large and One Small Each Containing Only Protein and Rna. Both the Ribosome and Its Subunits Are Characterized by Their Sedimentation Coefficients Expressed in Svedberg Units (symbol: S). Hence the Prokaryotic Ribosome (70s) Comprises a Large (50s) Subunit and a Small (30s) Subunit While the Eukaryotic Ribosome (80s) Comprises a Large (60s) Subunit and a Small (40s) Subunit. Two Sites On the Ribosomal Large Subunit Are Involved in Translation Namely the Aminoacyl Site (a Site) and Peptidyl Site (p Site). Ribosomes From Prokaryotes Eukaryotes Mitochondria and Chloroplasts Have Characteristically Distinct Ribosomal Proteins. 
    15935   Small Ribosomal Subunit  The Smaller of the Two Subunits of a Ribosome. 
    3723   RNA Binding  Interacting Selectively and Non Covalently with an RNA Molecule or a Portion Thereof. 
    3735   Structural Constituent of Ribosome  The Action of a Molecule That Contributes to the Structural Integrity of the Ribosome. 
    Chain D
    GO ID   Ontology GO Term Definition
    6412   Translation  The Cellular Metabolic Process in Which a Protein Is Formed Using the Sequence of a Mature MRNA Molecule to Specify the Sequence of Amino Acids in a Polypeptide Chain. Translation Is Mediated by the Ribosome and Begins with the Formation of a Ternary Complex Between Aminoacylated Initiator Methionine TRNA GTP and Initiation Factor 2 Which Subsequently Associates with the Small Subunit of the Ribosome and an Mrna. Translation Ends with the Release of a Polypeptide Chain From the Ribosome. 
    5622   Intracellular  The Living Contents of a Cell; the Matter Contained Within (but Not Including) the Plasma Membrane Usually Taken to Exclude Large Vacuoles and Masses of Secretory or Ingested Material. in Eukaryotes It Includes the Nucleus and Cytoplasm. 
    15935   Small Ribosomal Subunit  The Smaller of the Two Subunits of a Ribosome. 
    3723   RNA Binding  Interacting Selectively and Non Covalently with an RNA Molecule or a Portion Thereof. 
    3735   Structural Constituent of Ribosome  The Action of a Molecule That Contributes to the Structural Integrity of the Ribosome. 
    19843   RRNA Binding  Interacting Selectively and Non Covalently with Ribosomal Rna. 
    Chain E
    GO ID   Ontology GO Term Definition
    6412   Translation  The Cellular Metabolic Process in Which a Protein Is Formed Using the Sequence of a Mature MRNA Molecule to Specify the Sequence of Amino Acids in a Polypeptide Chain. Translation Is Mediated by the Ribosome and Begins with the Formation of a Ternary Complex Between Aminoacylated Initiator Methionine TRNA GTP and Initiation Factor 2 Which Subsequently Associates with the Small Subunit of the Ribosome and an Mrna. Translation Ends with the Release of a Polypeptide Chain From the Ribosome. 
    5840   Ribosome  An Intracellular Organelle About 200 a in Diameter Consisting of RNA and Protein. It Is the Site of Protein Biosynthesis Resulting From Translation of Messenger RNA (mrna). It Consists of Two Subunits One Large and One Small Each Containing Only Protein and Rna. Both the Ribosome and Its Subunits Are Characterized by Their Sedimentation Coefficients Expressed in Svedberg Units (symbol: S). Hence the Prokaryotic Ribosome (70s) Comprises a Large (50s) Subunit and a Small (30s) Subunit While the Eukaryotic Ribosome (80s) Comprises a Large (60s) Subunit and a Small (40s) Subunit. Two Sites On the Ribosomal Large Subunit Are Involved in Translation Namely the Aminoacyl Site (a Site) and Peptidyl Site (p Site). Ribosomes From Prokaryotes Eukaryotes Mitochondria and Chloroplasts Have Characteristically Distinct Ribosomal Proteins. 
    15935   Small Ribosomal Subunit  The Smaller of the Two Subunits of a Ribosome. 
    3723   RNA Binding  Interacting Selectively and Non Covalently with an RNA Molecule or a Portion Thereof. 
    3735   Structural Constituent of Ribosome  The Action of a Molecule That Contributes to the Structural Integrity of the Ribosome. 
    Chain F
    GO ID   Ontology GO Term Definition
    6412   Translation  The Cellular Metabolic Process in Which a Protein Is Formed Using the Sequence of a Mature MRNA Molecule to Specify the Sequence of Amino Acids in a Polypeptide Chain. Translation Is Mediated by the Ribosome and Begins with the Formation of a Ternary Complex Between Aminoacylated Initiator Methionine TRNA GTP and Initiation Factor 2 Which Subsequently Associates with the Small Subunit of the Ribosome and an Mrna. Translation Ends with the Release of a Polypeptide Chain From the Ribosome. 
    5840   Ribosome  An Intracellular Organelle About 200 a in Diameter Consisting of RNA and Protein. It Is the Site of Protein Biosynthesis Resulting From Translation of Messenger RNA (mrna). It Consists of Two Subunits One Large and One Small Each Containing Only Protein and Rna. Both the Ribosome and Its Subunits Are Characterized by Their Sedimentation Coefficients Expressed in Svedberg Units (symbol: S). Hence the Prokaryotic Ribosome (70s) Comprises a Large (50s) Subunit and a Small (30s) Subunit While the Eukaryotic Ribosome (80s) Comprises a Large (60s) Subunit and a Small (40s) Subunit. Two Sites On the Ribosomal Large Subunit Are Involved in Translation Namely the Aminoacyl Site (a Site) and Peptidyl Site (p Site). Ribosomes From Prokaryotes Eukaryotes Mitochondria and Chloroplasts Have Characteristically Distinct Ribosomal Proteins. 
    3735   Structural Constituent of Ribosome  The Action of a Molecule That Contributes to the Structural Integrity of the Ribosome. 
    19843   RRNA Binding  Interacting Selectively and Non Covalently with Ribosomal Rna. 
    Chain G
    GO ID   Ontology GO Term Definition
    6412   Translation  The Cellular Metabolic Process in Which a Protein Is Formed Using the Sequence of a Mature MRNA Molecule to Specify the Sequence of Amino Acids in a Polypeptide Chain. Translation Is Mediated by the Ribosome and Begins with the Formation of a Ternary Complex Between Aminoacylated Initiator Methionine TRNA GTP and Initiation Factor 2 Which Subsequently Associates with the Small Subunit of the Ribosome and an Mrna. Translation Ends with the Release of a Polypeptide Chain From the Ribosome. 
    15935   Small Ribosomal Subunit  The Smaller of the Two Subunits of a Ribosome. 
    3723   RNA Binding  Interacting Selectively and Non Covalently with an RNA Molecule or a Portion Thereof. 
    3735   Structural Constituent of Ribosome  The Action of a Molecule That Contributes to the Structural Integrity of the Ribosome. 
    Chain H
    GO ID   Ontology GO Term Definition
    6412   Translation  The Cellular Metabolic Process in Which a Protein Is Formed Using the Sequence of a Mature MRNA Molecule to Specify the Sequence of Amino Acids in a Polypeptide Chain. Translation Is Mediated by the Ribosome and Begins with the Formation of a Ternary Complex Between Aminoacylated Initiator Methionine TRNA GTP and Initiation Factor 2 Which Subsequently Associates with the Small Subunit of the Ribosome and an Mrna. Translation Ends with the Release of a Polypeptide Chain From the Ribosome. 
    5840   Ribosome  An Intracellular Organelle About 200 a in Diameter Consisting of RNA and Protein. It Is the Site of Protein Biosynthesis Resulting From Translation of Messenger RNA (mrna). It Consists of Two Subunits One Large and One Small Each Containing Only Protein and Rna. Both the Ribosome and Its Subunits Are Characterized by Their Sedimentation Coefficients Expressed in Svedberg Units (symbol: S). Hence the Prokaryotic Ribosome (70s) Comprises a Large (50s) Subunit and a Small (30s) Subunit While the Eukaryotic Ribosome (80s) Comprises a Large (60s) Subunit and a Small (40s) Subunit. Two Sites On the Ribosomal Large Subunit Are Involved in Translation Namely the Aminoacyl Site (a Site) and Peptidyl Site (p Site). Ribosomes From Prokaryotes Eukaryotes Mitochondria and Chloroplasts Have Characteristically Distinct Ribosomal Proteins. 
    3735   Structural Constituent of Ribosome  The Action of a Molecule That Contributes to the Structural Integrity of the Ribosome. 
    Chain I
    GO ID   Ontology GO Term Definition
    6412   Translation  The Cellular Metabolic Process in Which a Protein Is Formed Using the Sequence of a Mature MRNA Molecule to Specify the Sequence of Amino Acids in a Polypeptide Chain. Translation Is Mediated by the Ribosome and Begins with the Formation of a Ternary Complex Between Aminoacylated Initiator Methionine TRNA GTP and Initiation Factor 2 Which Subsequently Associates with the Small Subunit of the Ribosome and an Mrna. Translation Ends with the Release of a Polypeptide Chain From the Ribosome. 
    5840   Ribosome  An Intracellular Organelle About 200 a in Diameter Consisting of RNA and Protein. It Is the Site of Protein Biosynthesis Resulting From Translation of Messenger RNA (mrna). It Consists of Two Subunits One Large and One Small Each Containing Only Protein and Rna. Both the Ribosome and Its Subunits Are Characterized by Their Sedimentation Coefficients Expressed in Svedberg Units (symbol: S). Hence the Prokaryotic Ribosome (70s) Comprises a Large (50s) Subunit and a Small (30s) Subunit While the Eukaryotic Ribosome (80s) Comprises a Large (60s) Subunit and a Small (40s) Subunit. Two Sites On the Ribosomal Large Subunit Are Involved in Translation Namely the Aminoacyl Site (a Site) and Peptidyl Site (p Site). Ribosomes From Prokaryotes Eukaryotes Mitochondria and Chloroplasts Have Characteristically Distinct Ribosomal Proteins. 
    3735   Structural Constituent of Ribosome  The Action of a Molecule That Contributes to the Structural Integrity of the Ribosome. 
    Chain J
    GO ID   Ontology GO Term Definition
    6412   Translation  The Cellular Metabolic Process in Which a Protein Is Formed Using the Sequence of a Mature MRNA Molecule to Specify the Sequence of Amino Acids in a Polypeptide Chain. Translation Is Mediated by the Ribosome and Begins with the Formation of a Ternary Complex Between Aminoacylated Initiator Methionine TRNA GTP and Initiation Factor 2 Which Subsequently Associates with the Small Subunit of the Ribosome and an Mrna. Translation Ends with the Release of a Polypeptide Chain From the Ribosome. 
    5622   Intracellular  The Living Contents of a Cell; the Matter Contained Within (but Not Including) the Plasma Membrane Usually Taken to Exclude Large Vacuoles and Masses of Secretory or Ingested Material. in Eukaryotes It Includes the Nucleus and Cytoplasm. 
    5840   Ribosome  An Intracellular Organelle About 200 a in Diameter Consisting of RNA and Protein. It Is the Site of Protein Biosynthesis Resulting From Translation of Messenger RNA (mrna). It Consists of Two Subunits One Large and One Small Each Containing Only Protein and Rna. Both the Ribosome and Its Subunits Are Characterized by Their Sedimentation Coefficients Expressed in Svedberg Units (symbol: S). Hence the Prokaryotic Ribosome (70s) Comprises a Large (50s) Subunit and a Small (30s) Subunit While the Eukaryotic Ribosome (80s) Comprises a Large (60s) Subunit and a Small (40s) Subunit. Two Sites On the Ribosomal Large Subunit Are Involved in Translation Namely the Aminoacyl Site (a Site) and Peptidyl Site (p Site). Ribosomes From Prokaryotes Eukaryotes Mitochondria and Chloroplasts Have Characteristically Distinct Ribosomal Proteins. 
    3723   RNA Binding  Interacting Selectively and Non Covalently with an RNA Molecule or a Portion Thereof. 
    3735   Structural Constituent of Ribosome  The Action of a Molecule That Contributes to the Structural Integrity of the Ribosome. 
    Chain K
    GO ID   Ontology GO Term Definition
    6412   Translation  The Cellular Metabolic Process in Which a Protein Is Formed Using the Sequence of a Mature MRNA Molecule to Specify the Sequence of Amino Acids in a Polypeptide Chain. Translation Is Mediated by the Ribosome and Begins with the Formation of a Ternary Complex Between Aminoacylated Initiator Methionine TRNA GTP and Initiation Factor 2 Which Subsequently Associates with the Small Subunit of the Ribosome and an Mrna. Translation Ends with the Release of a Polypeptide Chain From the Ribosome. 
    5622   Intracellular  The Living Contents of a Cell; the Matter Contained Within (but Not Including) the Plasma Membrane Usually Taken to Exclude Large Vacuoles and Masses of Secretory or Ingested Material. in Eukaryotes It Includes the Nucleus and Cytoplasm. 
    5840   Ribosome  An Intracellular Organelle About 200 a in Diameter Consisting of RNA and Protein. It Is the Site of Protein Biosynthesis Resulting From Translation of Messenger RNA (mrna). It Consists of Two Subunits One Large and One Small Each Containing Only Protein and Rna. Both the Ribosome and Its Subunits Are Characterized by Their Sedimentation Coefficients Expressed in Svedberg Units (symbol: S). Hence the Prokaryotic Ribosome (70s) Comprises a Large (50s) Subunit and a Small (30s) Subunit While the Eukaryotic Ribosome (80s) Comprises a Large (60s) Subunit and a Small (40s) Subunit. Two Sites On the Ribosomal Large Subunit Are Involved in Translation Namely the Aminoacyl Site (a Site) and Peptidyl Site (p Site). Ribosomes From Prokaryotes Eukaryotes Mitochondria and Chloroplasts Have Characteristically Distinct Ribosomal Proteins. 
    3735   Structural Constituent of Ribosome  The Action of a Molecule That Contributes to the Structural Integrity of the Ribosome. 
    Chain L
    GO ID   Ontology GO Term Definition
    6412   Translation  The Cellular Metabolic Process in Which a Protein Is Formed Using the Sequence of a Mature MRNA Molecule to Specify the Sequence of Amino Acids in a Polypeptide Chain. Translation Is Mediated by the Ribosome and Begins with the Formation of a Ternary Complex Between Aminoacylated Initiator Methionine TRNA GTP and Initiation Factor 2 Which Subsequently Associates with the Small Subunit of the Ribosome and an Mrna. Translation Ends with the Release of a Polypeptide Chain From the Ribosome. 
    5622   Intracellular  The Living Contents of a Cell; the Matter Contained Within (but Not Including) the Plasma Membrane Usually Taken to Exclude Large Vacuoles and Masses of Secretory or Ingested Material. in Eukaryotes It Includes the Nucleus and Cytoplasm. 
    5840   Ribosome  An Intracellular Organelle About 200 a in Diameter Consisting of RNA and Protein. It Is the Site of Protein Biosynthesis Resulting From Translation of Messenger RNA (mrna). It Consists of Two Subunits One Large and One Small Each Containing Only Protein and Rna. Both the Ribosome and Its Subunits Are Characterized by Their Sedimentation Coefficients Expressed in Svedberg Units (symbol: S). Hence the Prokaryotic Ribosome (70s) Comprises a Large (50s) Subunit and a Small (30s) Subunit While the Eukaryotic Ribosome (80s) Comprises a Large (60s) Subunit and a Small (40s) Subunit. Two Sites On the Ribosomal Large Subunit Are Involved in Translation Namely the Aminoacyl Site (a Site) and Peptidyl Site (p Site). Ribosomes From Prokaryotes Eukaryotes Mitochondria and Chloroplasts Have Characteristically Distinct Ribosomal Proteins. 
    15935   Small Ribosomal Subunit  The Smaller of the Two Subunits of a Ribosome. 
    3735   Structural Constituent of Ribosome  The Action of a Molecule That Contributes to the Structural Integrity of the Ribosome. 
    Chain M
    GO ID   Ontology GO Term Definition
    6412   Translation  The Cellular Metabolic Process in Which a Protein Is Formed Using the Sequence of a Mature MRNA Molecule to Specify the Sequence of Amino Acids in a Polypeptide Chain. Translation Is Mediated by the Ribosome and Begins with the Formation of a Ternary Complex Between Aminoacylated Initiator Methionine TRNA GTP and Initiation Factor 2 Which Subsequently Associates with the Small Subunit of the Ribosome and an Mrna. Translation Ends with the Release of a Polypeptide Chain From the Ribosome. 
    5622   Intracellular  The Living Contents of a Cell; the Matter Contained Within (but Not Including) the Plasma Membrane Usually Taken to Exclude Large Vacuoles and Masses of Secretory or Ingested Material. in Eukaryotes It Includes the Nucleus and Cytoplasm. 
    5840   Ribosome  An Intracellular Organelle About 200 a in Diameter Consisting of RNA and Protein. It Is the Site of Protein Biosynthesis Resulting From Translation of Messenger RNA (mrna). It Consists of Two Subunits One Large and One Small Each Containing Only Protein and Rna. Both the Ribosome and Its Subunits Are Characterized by Their Sedimentation Coefficients Expressed in Svedberg Units (symbol: S). Hence the Prokaryotic Ribosome (70s) Comprises a Large (50s) Subunit and a Small (30s) Subunit While the Eukaryotic Ribosome (80s) Comprises a Large (60s) Subunit and a Small (40s) Subunit. Two Sites On the Ribosomal Large Subunit Are Involved in Translation Namely the Aminoacyl Site (a Site) and Peptidyl Site (p Site). Ribosomes From Prokaryotes Eukaryotes Mitochondria and Chloroplasts Have Characteristically Distinct Ribosomal Proteins. 
    3676   Nucleic Acid Binding  Interacting Selectively and Non Covalently with Any Nucleic Acid. 
    3723   RNA Binding  Interacting Selectively and Non Covalently with an RNA Molecule or a Portion Thereof. 
    3735   Structural Constituent of Ribosome  The Action of a Molecule That Contributes to the Structural Integrity of the Ribosome. 
    Chain N
    GO ID   Ontology GO Term Definition
    6412   Translation  The Cellular Metabolic Process in Which a Protein Is Formed Using the Sequence of a Mature MRNA Molecule to Specify the Sequence of Amino Acids in a Polypeptide Chain. Translation Is Mediated by the Ribosome and Begins with the Formation of a Ternary Complex Between Aminoacylated Initiator Methionine TRNA GTP and Initiation Factor 2 Which Subsequently Associates with the Small Subunit of the Ribosome and an Mrna. Translation Ends with the Release of a Polypeptide Chain From the Ribosome. 
    5622   Intracellular  The Living Contents of a Cell; the Matter Contained Within (but Not Including) the Plasma Membrane Usually Taken to Exclude Large Vacuoles and Masses of Secretory or Ingested Material. in Eukaryotes It Includes the Nucleus and Cytoplasm. 
    5840   Ribosome  An Intracellular Organelle About 200 a in Diameter Consisting of RNA and Protein. It Is the Site of Protein Biosynthesis Resulting From Translation of Messenger RNA (mrna). It Consists of Two Subunits One Large and One Small Each Containing Only Protein and Rna. Both the Ribosome and Its Subunits Are Characterized by Their Sedimentation Coefficients Expressed in Svedberg Units (symbol: S). Hence the Prokaryotic Ribosome (70s) Comprises a Large (50s) Subunit and a Small (30s) Subunit While the Eukaryotic Ribosome (80s) Comprises a Large (60s) Subunit and a Small (40s) Subunit. Two Sites On the Ribosomal Large Subunit Are Involved in Translation Namely the Aminoacyl Site (a Site) and Peptidyl Site (p Site). Ribosomes From Prokaryotes Eukaryotes Mitochondria and Chloroplasts Have Characteristically Distinct Ribosomal Proteins. 
    3735   Structural Constituent of Ribosome  The Action of a Molecule That Contributes to the Structural Integrity of the Ribosome. 
    Chain O
    GO ID   Ontology GO Term Definition
    6412   Translation  The Cellular Metabolic Process in Which a Protein Is Formed Using the Sequence of a Mature MRNA Molecule to Specify the Sequence of Amino Acids in a Polypeptide Chain. Translation Is Mediated by the Ribosome and Begins with the Formation of a Ternary Complex Between Aminoacylated Initiator Methionine TRNA GTP and Initiation Factor 2 Which Subsequently Associates with the Small Subunit of the Ribosome and an Mrna. Translation Ends with the Release of a Polypeptide Chain From the Ribosome. 
    5622   Intracellular  The Living Contents of a Cell; the Matter Contained Within (but Not Including) the Plasma Membrane Usually Taken to Exclude Large Vacuoles and Masses of Secretory or Ingested Material. in Eukaryotes It Includes the Nucleus and Cytoplasm. 
    5840   Ribosome  An Intracellular Organelle About 200 a in Diameter Consisting of RNA and Protein. It Is the Site of Protein Biosynthesis Resulting From Translation of Messenger RNA (mrna). It Consists of Two Subunits One Large and One Small Each Containing Only Protein and Rna. Both the Ribosome and Its Subunits Are Characterized by Their Sedimentation Coefficients Expressed in Svedberg Units (symbol: S). Hence the Prokaryotic Ribosome (70s) Comprises a Large (50s) Subunit and a Small (30s) Subunit While the Eukaryotic Ribosome (80s) Comprises a Large (60s) Subunit and a Small (40s) Subunit. Two Sites On the Ribosomal Large Subunit Are Involved in Translation Namely the Aminoacyl Site (a Site) and Peptidyl Site (p Site). Ribosomes From Prokaryotes Eukaryotes Mitochondria and Chloroplasts Have Characteristically Distinct Ribosomal Proteins. 
    3735   Structural Constituent of Ribosome  The Action of a Molecule That Contributes to the Structural Integrity of the Ribosome. 
    Chain P
    GO ID   Ontology GO Term Definition
    6412   Translation  The Cellular Metabolic Process in Which a Protein Is Formed Using the Sequence of a Mature MRNA Molecule to Specify the Sequence of Amino Acids in a Polypeptide Chain. Translation Is Mediated by the Ribosome and Begins with the Formation of a Ternary Complex Between Aminoacylated Initiator Methionine TRNA GTP and Initiation Factor 2 Which Subsequently Associates with the Small Subunit of the Ribosome and an Mrna. Translation Ends with the Release of a Polypeptide Chain From the Ribosome. 
    5622   Intracellular  The Living Contents of a Cell; the Matter Contained Within (but Not Including) the Plasma Membrane Usually Taken to Exclude Large Vacuoles and Masses of Secretory or Ingested Material. in Eukaryotes It Includes the Nucleus and Cytoplasm. 
    5840   Ribosome  An Intracellular Organelle About 200 a in Diameter Consisting of RNA and Protein. It Is the Site of Protein Biosynthesis Resulting From Translation of Messenger RNA (mrna). It Consists of Two Subunits One Large and One Small Each Containing Only Protein and Rna. Both the Ribosome and Its Subunits Are Characterized by Their Sedimentation Coefficients Expressed in Svedberg Units (symbol: S). Hence the Prokaryotic Ribosome (70s) Comprises a Large (50s) Subunit and a Small (30s) Subunit While the Eukaryotic Ribosome (80s) Comprises a Large (60s) Subunit and a Small (40s) Subunit. Two Sites On the Ribosomal Large Subunit Are Involved in Translation Namely the Aminoacyl Site (a Site) and Peptidyl Site (p Site). Ribosomes From Prokaryotes Eukaryotes Mitochondria and Chloroplasts Have Characteristically Distinct Ribosomal Proteins. 
    3735   Structural Constituent of Ribosome  The Action of a Molecule That Contributes to the Structural Integrity of the Ribosome. 
    Chain Q
    GO ID   Ontology GO Term Definition
    6412   Translation  The Cellular Metabolic Process in Which a Protein Is Formed Using the Sequence of a Mature MRNA Molecule to Specify the Sequence of Amino Acids in a Polypeptide Chain. Translation Is Mediated by the Ribosome and Begins with the Formation of a Ternary Complex Between Aminoacylated Initiator Methionine TRNA GTP and Initiation Factor 2 Which Subsequently Associates with the Small Subunit of the Ribosome and an Mrna. Translation Ends with the Release of a Polypeptide Chain From the Ribosome. 
    5622   Intracellular  The Living Contents of a Cell; the Matter Contained Within (but Not Including) the Plasma Membrane Usually Taken to Exclude Large Vacuoles and Masses of Secretory or Ingested Material. in Eukaryotes It Includes the Nucleus and Cytoplasm. 
    5840   Ribosome  An Intracellular Organelle About 200 a in Diameter Consisting of RNA and Protein. It Is the Site of Protein Biosynthesis Resulting From Translation of Messenger RNA (mrna). It Consists of Two Subunits One Large and One Small Each Containing Only Protein and Rna. Both the Ribosome and Its Subunits Are Characterized by Their Sedimentation Coefficients Expressed in Svedberg Units (symbol: S). Hence the Prokaryotic Ribosome (70s) Comprises a Large (50s) Subunit and a Small (30s) Subunit While the Eukaryotic Ribosome (80s) Comprises a Large (60s) Subunit and a Small (40s) Subunit. Two Sites On the Ribosomal Large Subunit Are Involved in Translation Namely the Aminoacyl Site (a Site) and Peptidyl Site (p Site). Ribosomes From Prokaryotes Eukaryotes Mitochondria and Chloroplasts Have Characteristically Distinct Ribosomal Proteins. 
    3735   Structural Constituent of Ribosome  The Action of a Molecule That Contributes to the Structural Integrity of the Ribosome. 
    Chain R
    GO ID   Ontology GO Term Definition
    6412   Translation  The Cellular Metabolic Process in Which a Protein Is Formed Using the Sequence of a Mature MRNA Molecule to Specify the Sequence of Amino Acids in a Polypeptide Chain. Translation Is Mediated by the Ribosome and Begins with the Formation of a Ternary Complex Between Aminoacylated Initiator Methionine TRNA GTP and Initiation Factor 2 Which Subsequently Associates with the Small Subunit of the Ribosome and an Mrna. Translation Ends with the Release of a Polypeptide Chain From the Ribosome. 
    5622   Intracellular  The Living Contents of a Cell; the Matter Contained Within (but Not Including) the Plasma Membrane Usually Taken to Exclude Large Vacuoles and Masses of Secretory or Ingested Material. in Eukaryotes It Includes the Nucleus and Cytoplasm. 
    5840   Ribosome  An Intracellular Organelle About 200 a in Diameter Consisting of RNA and Protein. It Is the Site of Protein Biosynthesis Resulting From Translation of Messenger RNA (mrna). It Consists of Two Subunits One Large and One Small Each Containing Only Protein and Rna. Both the Ribosome and Its Subunits Are Characterized by Their Sedimentation Coefficients Expressed in Svedberg Units (symbol: S). Hence the Prokaryotic Ribosome (70s) Comprises a Large (50s) Subunit and a Small (30s) Subunit While the Eukaryotic Ribosome (80s) Comprises a Large (60s) Subunit and a Small (40s) Subunit. Two Sites On the Ribosomal Large Subunit Are Involved in Translation Namely the Aminoacyl Site (a Site) and Peptidyl Site (p Site). Ribosomes From Prokaryotes Eukaryotes Mitochondria and Chloroplasts Have Characteristically Distinct Ribosomal Proteins. 
    3735   Structural Constituent of Ribosome  The Action of a Molecule That Contributes to the Structural Integrity of the Ribosome. 
    Chain S
    GO ID   Ontology GO Term Definition
    6412   Translation  The Cellular Metabolic Process in Which a Protein Is Formed Using the Sequence of a Mature MRNA Molecule to Specify the Sequence of Amino Acids in a Polypeptide Chain. Translation Is Mediated by the Ribosome and Begins with the Formation of a Ternary Complex Between Aminoacylated Initiator Methionine TRNA GTP and Initiation Factor 2 Which Subsequently Associates with the Small Subunit of the Ribosome and an Mrna. Translation Ends with the Release of a Polypeptide Chain From the Ribosome. 
    5840   Ribosome  An Intracellular Organelle About 200 a in Diameter Consisting of RNA and Protein. It Is the Site of Protein Biosynthesis Resulting From Translation of Messenger RNA (mrna). It Consists of Two Subunits One Large and One Small Each Containing Only Protein and Rna. Both the Ribosome and Its Subunits Are Characterized by Their Sedimentation Coefficients Expressed in Svedberg Units (symbol: S). Hence the Prokaryotic Ribosome (70s) Comprises a Large (50s) Subunit and a Small (30s) Subunit While the Eukaryotic Ribosome (80s) Comprises a Large (60s) Subunit and a Small (40s) Subunit. Two Sites On the Ribosomal Large Subunit Are Involved in Translation Namely the Aminoacyl Site (a Site) and Peptidyl Site (p Site). Ribosomes From Prokaryotes Eukaryotes Mitochondria and Chloroplasts Have Characteristically Distinct Ribosomal Proteins. 
    15935   Small Ribosomal Subunit  The Smaller of the Two Subunits of a Ribosome. 
    3723   RNA Binding  Interacting Selectively and Non Covalently with an RNA Molecule or a Portion Thereof. 
    3735   Structural Constituent of Ribosome  The Action of a Molecule That Contributes to the Structural Integrity of the Ribosome. 
    Chain T
    GO ID   Ontology GO Term Definition
    6412   Translation  The Cellular Metabolic Process in Which a Protein Is Formed Using the Sequence of a Mature MRNA Molecule to Specify the Sequence of Amino Acids in a Polypeptide Chain. Translation Is Mediated by the Ribosome and Begins with the Formation of a Ternary Complex Between Aminoacylated Initiator Methionine TRNA GTP and Initiation Factor 2 Which Subsequently Associates with the Small Subunit of the Ribosome and an Mrna. Translation Ends with the Release of a Polypeptide Chain From the Ribosome. 
    5622   Intracellular  The Living Contents of a Cell; the Matter Contained Within (but Not Including) the Plasma Membrane Usually Taken to Exclude Large Vacuoles and Masses of Secretory or Ingested Material. in Eukaryotes It Includes the Nucleus and Cytoplasm. 
    5840   Ribosome  An Intracellular Organelle About 200 a in Diameter Consisting of RNA and Protein. It Is the Site of Protein Biosynthesis Resulting From Translation of Messenger RNA (mrna). It Consists of Two Subunits One Large and One Small Each Containing Only Protein and Rna. Both the Ribosome and Its Subunits Are Characterized by Their Sedimentation Coefficients Expressed in Svedberg Units (symbol: S). Hence the Prokaryotic Ribosome (70s) Comprises a Large (50s) Subunit and a Small (30s) Subunit While the Eukaryotic Ribosome (80s) Comprises a Large (60s) Subunit and a Small (40s) Subunit. Two Sites On the Ribosomal Large Subunit Are Involved in Translation Namely the Aminoacyl Site (a Site) and Peptidyl Site (p Site). Ribosomes From Prokaryotes Eukaryotes Mitochondria and Chloroplasts Have Characteristically Distinct Ribosomal Proteins. 
    3723   RNA Binding  Interacting Selectively and Non Covalently with an RNA Molecule or a Portion Thereof. 
    3735   Structural Constituent of Ribosome  The Action of a Molecule That Contributes to the Structural Integrity of the Ribosome. 
    Chain Y,Z
    GO ID   Ontology GO Term Definition
    6401   RNA Catabolic Process  The Chemical Reactions and Pathways Resulting in the Breakdown of RNA Ribonucleic Acid One of the Two Main Type of Nucleic Acid Consisting of a Long Unbranched Macromolecule Formed From Ribonucleotides Joined in 3' 5' Phosphodiester Linkage. 
    4519   Endonuclease Activity  Catalysis of the Hydrolysis of Ester Linkages Within Nucleic Acids by Creating Internal Breaks. 


     
  •   Gene Details   Hide

    Natural Source

    Chain W
    Scientific Name Thermus thermophilus  
    Strain HB8
    ATCC Source 27634
    Chain V
    Scientific Name Thermus thermophilus  
    Strain HB8
    ATCC Source 27634
    Chain U
    Scientific Name Thermus thermophilus  
    Strain HB8
    ATCC Source 27634
    Chain T
    Scientific Name Thermus thermophilus  
    Strain HB8
    ATCC Source 27634
    Chain S
    Scientific Name Thermus thermophilus  
    Strain HB8
    ATCC Source 27634
    Chain R
    Scientific Name Thermus thermophilus  
    Strain HB8
    ATCC Source 27634
    Chain Q
    Scientific Name Thermus thermophilus  
    Strain HB8
    ATCC Source 27634
    Chain P
    Scientific Name Thermus thermophilus  
    Strain HB8
    ATCC Source 27634
    Chain O
    Scientific Name Thermus thermophilus  
    Strain HB8
    ATCC Source 27634
    Chain N
    Scientific Name Thermus thermophilus  
    Strain HB8
    ATCC Source 27634
    Chain M
    Scientific Name Thermus thermophilus  
    Strain HB8
    ATCC Source 27634
    Chain A
    Scientific Name Thermus thermophilus  
    Strain HB8
    ATCC Source 27634
    Details 70s Ribosomes Purified From T. Thermophilus
    Chain B
    Scientific Name Thermus thermophilus  
    Strain HB8
    ATCC Source 27634
    Chain C
    Scientific Name Thermus thermophilus  
    Strain HB8
    ATCC Source 27634
    Chain D
    Scientific Name Thermus thermophilus  
    Strain HB8
    ATCC Source 27634
    Chain E
    Scientific Name Thermus thermophilus  
    Strain HB8
    ATCC Source 27634
    Chain F
    Scientific Name Thermus thermophilus  
    Strain HB8
    ATCC Source 27634
    Chain G
    Scientific Name Thermus thermophilus  
    Strain HB8
    ATCC Source 27634
    Chain H
    Scientific Name Thermus thermophilus  
    Strain HB8
    ATCC Source 27634
    Chain I
    Scientific Name Thermus thermophilus  
    Strain HB8
    ATCC Source 27634
    Chain J
    Scientific Name Thermus thermophilus  
    Strain HB8
    ATCC Source 27634
    Chain K
    Scientific Name Thermus thermophilus  
    Strain HB8
    ATCC Source 27634
    Chain L
    Scientific Name Thermus thermophilus  
    Strain HB8
    ATCC Source 27634

    Genetic Source

    Chain Y,Z
    Scientific Name Escherichia coli  
    Strain K-12
    Gene b1563, jw1555, rele
    Host Scientific Name Escherichia coli  
    Host Strain Bl21
    Host Vector Type Pqe


    Genome Information

    Chromosome Locus Gene ID Gene Name Symbol
    - - 3168024     30S ribosomal protein S11 TTHA1666    
    - - 3167962     30S ribosomal protein S13 RPSM    
    - - 3170114     30S ribosomal protein S16 RPSP    
    - - 3169831     30S ribosomal protein S17 RPSQ    
    - - 3169870     30S ribosomal protein S18 RPSR    
    - - 3168087     30S ribosomal protein S20 RPST    
    - - 3170121     30S ribosomal protein S2 RPSB    
    - - 3168725     30S ribosomal protein S3 RPSC    
    - - 3168006     30S ribosomal protein S4 RPSD    
    - - 3167931     30S ribosomal protein S7 TTHA1696    
    - - 3169752     30S ribosomal protein S9 RPSI