4USQ

Structure of flavin-containing monooxygenase from Cellvibrio sp. BR


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.39 Å
  • R-Value Free: 0.287 
  • R-Value Work: 0.246 
  • R-Value Observed: 0.248 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.2 of the entry. See complete history


Literature

Exploring Nicotinamide Cofactor Promiscuity in Nad(P)H-Dependent Flavin Containing Monooxygenases (Fmos) Using Natural Variation within the Phosphate Binding Loop. Structure and Activity of Fmos from Cellvibrio Sp. Br and Pseudomonas Stutzeri NF13

Jensen, C.N.Ali, S.T.Allen, M.J.Grogan, G.

(2014) J Mol Catal B Enzym 109: 191

  • DOI: https://doi.org/10.1016/j.molcatb.2014.08.019
  • Primary Citation of Related Structures:  
    4USQ, 4USR

  • PubMed Abstract: 

    Flavin-containing monooxygenases (FMOs) catalyse asymmetric oxidation reactions that have potential for preparative organic synthesis, but most use the more expensive, phosphorylated nicotinamide cofactor NADPH to reduce FAD to FADH 2 prior to formation of the (hydro)peroxy intermediate required for substrate oxygenation. A comparison of the structures of NADPH-dependent FMO from Methylophaga aminisulfidivorans (mFMO) and SMFMO from Stenotrophomonas maltophilia , which is able to use both NADPH and NADH, suggested that the promiscuity of the latter enzyme may be due in part to the substitution of an Arg-Thr couple in the NADPH phosphate recognition site in mFMO, for a Gln-His couple in SMFMO (Jensen et al., 2012, Chembiochem , 13, 872-878). Natural variation within the phosphate binding region, and its influence on nicotinamide cofactor promiscuity, was explored through the cloning, expression, characterisation and structural studies of FMOs from Cellvibrio sp. BR (CFMO) and Pseudomonas stutzeri NF13 (PSFMO), which possess Thr-Ser and Gln-Glu in the putative phosphate recognition positions, respectively. CFMO and PSFMO displayed 5- and 1.5-fold greater activity, respectively, than SMFMO for the reduction of FAD with NADH, and were also cofactor promiscuous, displaying a ratio of activity with NADH:NADPH of 1.7:1 and 1:1.3, respectively. The structures of CFMO and PSFMO revealed the context of the phosphate binding loop in each case, and also clarified the structure of the mobile helix-loop-helix motif that appears to shield the FAD-binding pocket from bulk solvent in this class of FMOs, a feature that was absent from the structure of SMFMO.


  • Organizational Affiliation

    York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
PYRIDINE NUCLEOTIDE-DISULFIDE OXIDOREDUCTASEA,
B [auth F]
361Cellvibrio sp. BRMutation(s): 0 
EC: 1.14.13.8
UniProt
Find proteins for I3IEE4 (Cellvibrio sp. BR)
Explore I3IEE4 
Go to UniProtKB:  I3IEE4
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupI3IEE4
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
FAD
Query on FAD

Download Ideal Coordinates CCD File 
C [auth A],
D [auth F]
FLAVIN-ADENINE DINUCLEOTIDE
C27 H33 N9 O15 P2
VWWQXMAJTJZDQX-UYBVJOGSSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.39 Å
  • R-Value Free: 0.287 
  • R-Value Work: 0.246 
  • R-Value Observed: 0.248 
  • Space Group: C 1 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 115.41α = 90
b = 95.09β = 126.26
c = 92.37γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
xia2data reduction
SCALAdata scaling
MOLREPphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2014-10-01
    Type: Initial release
  • Version 1.1: 2014-11-19
    Changes: Database references
  • Version 1.2: 2024-01-10
    Changes: Data collection, Database references, Derived calculations, Other, Refinement description