3U26

Crystal Structure of Engineered Protein. Northeast Structural Genomics Consortium Target OR48


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.59 Å
  • R-Value Free: 0.248 
  • R-Value Work: 0.200 
  • R-Value Observed: 0.202 

wwPDB Validation   3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

Computational design of enone-binding proteins with catalytic activity for the Morita-Baylis-Hillman reaction.

Bjelic, S.Nivon, L.G.Celebi-Olcum, N.Kiss, G.Rosewall, C.F.Lovick, H.M.Ingalls, E.L.Gallaher, J.L.Seetharaman, J.Lew, S.Montelione, G.T.Hunt, J.F.Michael, F.E.Houk, K.N.Baker, D.

(2013) ACS Chem Biol 8: 749-757

  • DOI: https://doi.org/10.1021/cb3006227
  • Primary Citation of Related Structures:  
    3U26, 3UW6

  • PubMed Abstract: 

    The Morita-Baylis-Hillman reaction forms a carbon-carbon bond between the α-carbon of a conjugated carbonyl compound and a carbon electrophile. The reaction mechanism involves Michael addition of a nucleophile catalyst at the carbonyl β-carbon, followed by bond formation with the electrophile and catalyst disassociation to release the product. We used Rosetta to design 48 proteins containing active sites predicted to carry out this mechanism, of which two show catalytic activity by mass spectrometry (MS). Substrate labeling measured by MS and site-directed mutagenesis experiments show that the designed active-site residues are responsible for activity, although rate acceleration over background is modest. To characterize the designed proteins, we developed a fluorescence-based screen for intermediate formation in cell lysates, carried out microsecond molecular dynamics simulations, and solved X-ray crystal structures. These data indicate a partially formed active site and suggest several clear avenues for designing more active catalysts.


  • Organizational Affiliation

    Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
PF00702 domain protein234Pyrococcus horikoshiiMutation(s): 0 
UniProt
Find proteins for O58216 (Pyrococcus horikoshii (strain ATCC 700860 / DSM 12428 / JCM 9974 / NBRC 100139 / OT-3))
Explore O58216 
Go to UniProtKB:  O58216
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupO58216
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Modified Residues  1 Unique
IDChains TypeFormula2D DiagramParent
MSE
Query on MSE
A
L-PEPTIDE LINKINGC5 H11 N O2 SeMET
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.59 Å
  • R-Value Free: 0.248 
  • R-Value Work: 0.200 
  • R-Value Observed: 0.202 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 33.606α = 90
b = 67.579β = 109.3
c = 48.193γ = 90
Software Package:
Software NamePurpose
ADSCdata collection
SHELXSphasing
REFMACrefinement
HKL-2000data reduction
HKL-2000data scaling

Structure Validation

View Full Validation Report



Entry History 

Revision History  (Full details and data files)

  • Version 1.0: 2011-11-23
    Type: Initial release
  • Version 1.1: 2022-03-02
    Changes: Database references, Derived calculations