3HRH

Crystal Structure of Antigen 85C and Glycerol


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.30 Å
  • R-Value Free: 0.221 
  • R-Value Work: 0.190 
  • R-Value Observed: 0.190 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Design, synthesis and biological evaluation of sugar-derived esters, alpha-ketoesters and alpha-ketoamides as inhibitors for Mycobacterium tuberculosis antigen 85C.

Sanki, A.K.Boucau, J.Umesiri, F.E.Ronning, D.R.Sucheck, S.J.

(2009) Mol Biosyst 5: 945-956

  • DOI: https://doi.org/10.1039/b902284h
  • Primary Citation of Related Structures:  
    3HRH

  • PubMed Abstract: 

    Peptide-based 1,2-dicarbonyl compounds have emerged as potent inhibitors for serine proteases. Herein, we have designed and synthesized d-arabinose and d-trehalose-based esters, alpha-ketoesters and alpha-ketoamides, and evaluated their inhibitory activity against Mycobacterium tuberculosis (Mtb) antigen 85C (ag85C), an acyltransferase in the serine hydrolase superfamily. In addition the compounds were evaluated for the ability to inhibit the growth of Mycobacterium smegmatis ATCC 14 468, a non-pathogenic surrogate for Mtb. Among the synthetic analogs evaluated only the methyl ester derived from d-arabinose was found to inhibit the acyltransferase activity of ag85C (IC(50) = 25 mM). Based on this weak inhibitory activity it was not surprising that none of the compounds inhibits the growth of M. smegmatis. In spite of the weak inhibitory activity of , X-ray crystallography on crystals of ag85C soaked with suggested the formation of a covalent ester adduct between and the Ser124 side chain hydroxyl moiety found within the catalytic site of ag85C; however, some of the active site electron density appears to result from bound glycerol. The lack of activity associated with the alpha-ketoester and alpha-ketoamide derivatives of d-trehalose may be the result of intramolecular cyclization of the alpha-keto moiety with the nearby C-4/4' hydroxyls leading to the formation of stable bicyclo-ester and amide derivatives.


  • Organizational Affiliation

    Department of Chemistry, The University of Toledo, OH 43606, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Antigen 85-C
A, B
303Mycobacterium tuberculosisMutation(s): 0 
Gene Names: fbpCfbpC2mpt45MT0137MTCI5.03cRv0129c
EC: 2.3.1
UniProt
Find proteins for P9WQN9 (Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv))
Explore P9WQN9 
Go to UniProtKB:  P9WQN9
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP9WQN9
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
GOL
Query on GOL

Download Ideal Coordinates CCD File 
C [auth A]
D [auth A]
E [auth A]
F [auth A]
G [auth B]
C [auth A],
D [auth A],
E [auth A],
F [auth A],
G [auth B],
H [auth B],
I [auth B],
J [auth B],
K [auth B],
L [auth B],
M [auth B],
N [auth B],
O [auth B],
P [auth B],
Q [auth B],
R [auth B],
S [auth B],
T [auth B],
U [auth B],
V [auth B]
GLYCEROL
C3 H8 O3
PEDCQBHIVMGVHV-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.30 Å
  • R-Value Free: 0.221 
  • R-Value Work: 0.190 
  • R-Value Observed: 0.190 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 67.777α = 90
b = 80.278β = 90
c = 136.835γ = 90
Software Package:
Software NamePurpose
CNSrefinement
HKL-2000data reduction
HKL-2000data scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2009-09-29
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Non-polymer description, Version format compliance
  • Version 1.2: 2018-01-24
    Changes: Structure summary
  • Version 1.3: 2023-09-06
    Changes: Data collection, Database references, Derived calculations, Refinement description