3BT0

Crystal structure of transthyretin variant V20S


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.59 Å
  • R-Value Free: 0.229 
  • R-Value Work: 0.209 
  • R-Value Observed: 0.210 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Structural and mutational analyses of protein-protein interactions between transthyretin and retinol-binding protein.

Zanotti, G.Folli, C.Cendron, L.Alfieri, B.Nishida, S.K.Gliubich, F.Pasquato, N.Negro, A.Berni, R.

(2008) FEBS J 275: 5841-5854

  • DOI: https://doi.org/10.1111/j.1742-4658.2008.06705.x
  • Primary Citation of Related Structures:  
    3BSZ, 3BT0, 3CXF

  • PubMed Abstract: 

    Transthyretin is a tetrameric binding protein involved in the transport of thyroid hormones and in the cotransport of retinol by forming a complex in plasma with retinol-binding protein. In the present study, we report the crystal structure of a macromolecular complex, in which human transthyretin, human holo-retinol-binding protein and a murine anti-retinol-binding protein Fab are assembled according to a 1 : 2 : 2 stoichiometry. The main interactions, both polar and apolar, between retinol-binding protein and transthyretin involve the retinol hydroxyl group and a limited number of solvent exposed residues. The relevance of transthyretin residues in complex formation with retinol-binding protein has been examined by mutational analysis, and the structural consequences of some transthyretin point mutations affecting protein-protein recognition have been investigated. Despite a few exceptions, in general, the substitution of a hydrophilic for a hydrophobic side chain in contact regions results in a decrease or even a loss of binding affinity, thus revealing the importance of interfacial hydrophobic interactions and a high degree of complementarity between retinol-binding protein and transthyretin. The effect is particularly evident when the mutation affects an interacting residue present in two distinct subunits of transthyretin participating simultaneously in two interactions with a retinol-binding protein molecule. This is the case of the amyloidogenic I84S replacement, which abolishes the interaction with retinol-binding protein and is associated with an altered retinol-binding protein plasma transport in carriers of this mutation. Remarkably, some of the residues in mutated human transthyretin that weaken or abolish the interaction with retinol-binding protein are present in piscine transthyretin, consistent with the lack of interaction between retinol-binding protein and transthyretin in fish.


  • Organizational Affiliation

    Department of Chemical Sciences and Institute of Biomolecular Chemistry-CNR, University of Padua, Italy. giuseppe.zanotti@unipd.it


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Transthyretin
A, B
127Homo sapiensMutation(s): 1 
UniProt & NIH Common Fund Data Resources
Find proteins for P02766 (Homo sapiens)
Explore P02766 
Go to UniProtKB:  P02766
PHAROS:  P02766
GTEx:  ENSG00000118271 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP02766
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.59 Å
  • R-Value Free: 0.229 
  • R-Value Work: 0.209 
  • R-Value Observed: 0.210 
  • Space Group: P 21 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 41.999α = 90
b = 83.812β = 90
c = 65.58γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
ADSCdata collection
MOSFLMdata reduction
SCALAdata scaling
AMoREphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2008-11-11
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2021-11-10
    Changes: Database references
  • Version 1.3: 2023-11-01
    Changes: Data collection, Refinement description