2VAM

FtsZ B. subtilis


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.50 Å
  • R-Value Free: 0.270 
  • R-Value Work: 0.209 
  • R-Value Observed: 0.212 

wwPDB Validation 


This is version 1.3 of the entry. See complete history


Literature

Structural Insights Into the Conformational Variability of Ftsz

Oliva, M.A.Trambaiolo, D.Lowe, J.

(2007) J Mol Biol 373: 1229

  • DOI: https://doi.org/10.1016/j.jmb.2007.08.056
  • Primary Citation of Related Structures:  
    2R6R, 2VAM, 2VAP, 2VAW

  • PubMed Abstract: 

    FtsZ is a prokaryotic homologue of the eukaryotic cytoskeletal protein tubulin and plays a central role in prokaryotic cell division. Both FtsZ and tubulin are known to pass through cycles of polymerization and depolymerization, but the structural mechanisms underlying this cycle remain to be determined. Comparison of tubulin structures obtained in different states has led to a model in which the tubulin monomer undergoes a conformational switch between a "straight" form found in the walls of microtubules and a "curved" form associated with depolymerization, and it was proposed recently that this model may apply also to FtsZ. Here, we present new structures of FtsZ from47 Aquifex aeolicus,47 Bacillus subtilis, Methanococcus jannaschii and Pseudomonas aeruginosa that provide strong constraints on any proposed role for a conformational switch in the FtsZ monomer. By comparing the full range of FtsZ structures determined in different crystal forms and nucleotide states, and in the presence or in the absence of regulatory proteins, we find no evidence of a conformational change involving domain movement. Our new structural data make it clear that the previously proposed straight and curved conformations of FtsZ were related to inter-species differences in domain orientation rather than two interconvertible conformations. We propose a new model in which lateral interactions help determine the curvature of protofilaments.


  • Organizational Affiliation

    MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
CELL DIVISION PROTEIN FTSZ382Bacillus subtilisMutation(s): 0 
UniProt
Find proteins for P17865 (Bacillus subtilis (strain 168))
Explore P17865 
Go to UniProtKB:  P17865
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP17865
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
SO4
Query on SO4

Download Ideal Coordinates CCD File 
B [auth A]SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.50 Å
  • R-Value Free: 0.270 
  • R-Value Work: 0.209 
  • R-Value Observed: 0.212 
  • Space Group: P 32 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 87.449α = 90
b = 87.438β = 90
c = 87.636γ = 120
Software Package:
Software NamePurpose
REFMACrefinement
MOSFLMdata reduction
SCALAdata scaling
PHASERphasing

Structure Validation



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2007-09-11
    Type: Initial release
  • Version 1.1: 2011-05-08
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2023-12-13
    Changes: Data collection, Database references, Other, Refinement description