2QG9

Structure of a regulatory subunit mutant D19A of ATCase from E. coli


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.70 Å
  • R-Value Free: 0.244 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Comparison of two T-state structures of regulatory-chain mutants of Escherichia coli aspartate transcarbamoylase suggests that His20 and Asp19 modulate the response to heterotropic effectors.

Stec, B.Williams, M.K.Stieglitz, K.A.Kantrowitz, E.R.

(2007) Acta Crystallogr D Biol Crystallogr 63: 1243-1253

  • DOI: https://doi.org/10.1107/S0907444907052985
  • Primary Citation of Related Structures:  
    2QG9, 2QGF

  • PubMed Abstract: 

    Asp19 and His20 of Escherichia coli aspartate transcarbamoylase (EC 2.1.3.2) function in the binding of the triphosphate and ribose moieties of ATP and CTP and thereby may mediate important heterotropic regulation. The roles of these residues were investigated by individually mutating each of them to alanine and determining both the kinetic parameters and the structures of the mutant enzymes. The structures were determined by X-ray crystallography at 2.15 and 2.75 A resolution for His20Ar and Asp19Ar, respectively. Analysis was carried out on the unliganded T-state form. The structures of the mutants did not show gross structural divergence from the canonical T-state, but showed small and systematic differences that were analyzed by global conformational analysis. Structural analysis and comparison with other regulatory-chain mutants confirmed that the Asp19Ar mutant represents the stabilized T-state, while structural analysis of the His20Ar form indicated that it represents an equilibrium shifted towards the R-state. Global analysis of the Asp19Ar and His20Ar enzymes suggested a possible role as molecular modulators of the heterotropic effects caused by the binding of nucleotides at the regulatory site. These studies highlighted the structural determinants of T- or R-state stabilization. Additionally, application of the ;consensus modeling' methodology combined with high-resolution data allowed the determination of unclear structural features contributing to nucleotide specificity and the role of the N-termini of the regulatory chains.


  • Organizational Affiliation

    Burnham Institute for Medical Research, La Jolla, CA 92037, USA. bstec@burnham.org


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Aspartate carbamoyltransferase catalytic chain
A, C
310Escherichia coliMutation(s): 0 
Gene Names: pyrB
EC: 2.1.3.2
UniProt
Find proteins for P0A786 (Escherichia coli (strain K12))
Explore P0A786 
Go to UniProtKB:  P0A786
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP0A786
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
Aspartate carbamoyltransferase regulatory chain
B, D
153Escherichia coliMutation(s): 1 
Gene Names: pyrI
UniProt
Find proteins for P0A7F3 (Escherichia coli (strain K12))
Explore P0A7F3 
Go to UniProtKB:  P0A7F3
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP0A7F3
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
ZN
Query on ZN

Download Ideal Coordinates CCD File 
E [auth B],
F [auth D]
ZINC ION
Zn
PTFCDOFLOPIGGS-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.70 Å
  • R-Value Free: 0.244 
  • Space Group: P 3 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 122.29α = 90
b = 122.29β = 90
c = 142.41γ = 120
Software Package:
Software NamePurpose
SDMSdata collection
X-PLORmodel building
X-PLORrefinement
SDMSdata reduction
SDMSdata scaling
X-PLORphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2008-02-19
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2021-10-20
    Changes: Database references, Derived calculations
  • Version 1.3: 2024-02-21
    Changes: Data collection