2AG5

Crystal Structure of Human DHRS6


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.84 Å
  • R-Value Free: 0.224 
  • R-Value Work: 0.167 
  • R-Value Observed: 0.168 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.4 of the entry. See complete history


Literature

Characterization of human DHRS6, an orphan short chain dehydrogenase/reductase enzyme: a novel, cytosolic type 2 R-beta-hydroxybutyrate dehydrogenase

Guo, K.Lukacik, P.Papagrigoriou, E.Meier, M.Lee, W.H.Adamski, J.Oppermann, U.

(2006) J Biol Chem 281: 10291-10297

  • DOI: https://doi.org/10.1074/jbc.M511346200
  • Primary Citation of Related Structures:  
    2AG5

  • PubMed Abstract: 

    Human DHRS6 is a previously uncharacterized member of the short chain dehydrogenases/reductase family and displays significant homologies to bacterial hydroxybutyrate dehydrogenases. Substrate screening reveals sole NAD(+)-dependent conversion of (R)-hydroxybutyrate to acetoacetate with K(m) values of about 10 mm, consistent with plasma levels of circulating ketone bodies in situations of starvation or ketoacidosis. The structure of human DHRS6 was determined at a resolution of 1.8 A in complex with NAD(H) and reveals a tetrameric organization with a short chain dehydrogenases/reductase-typical folding pattern. A highly conserved triad of Arg residues ("triple R" motif consisting of Arg(144), Arg(188), and Arg(205)) was found to bind a sulfate molecule at the active site. Docking analysis of R-beta-hydroxybutyrate into the active site reveals an experimentally consistent model of substrate carboxylate binding and catalytically competent orientation. GFP reporter gene analysis reveals a cytosolic localization upon transfection into mammalian cells. These data establish DHRS6 as a novel, cytosolic type 2 (R)-hydroxybutyrate dehydrogenase, distinct from its well characterized mitochondrial type 1 counterpart. The properties determined for DHRS6 suggest a possible physiological role in cytosolic ketone body utilization, either as a secondary system for energy supply in starvation or to generate precursors for lipid and sterol synthesis.


  • Organizational Affiliation

    Structural Genomics Consortium, University of Oxford, Oxford OX3 7LD, United Kingdom.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
dehydrogenase/reductase (SDR family) member 6
A, B, C, D
246Homo sapiensMutation(s): 0 
Gene Names: DHRS6
UniProt & NIH Common Fund Data Resources
Find proteins for Q9BUT1 (Homo sapiens)
Explore Q9BUT1 
Go to UniProtKB:  Q9BUT1
PHAROS:  Q9BUT1
GTEx:  ENSG00000164039 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ9BUT1
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.84 Å
  • R-Value Free: 0.224 
  • R-Value Work: 0.167 
  • R-Value Observed: 0.168 
  • Space Group: P 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 62.092α = 106.05
b = 62.055β = 105.95
c = 74.042γ = 100.97
Software Package:
Software NamePurpose
REFMACrefinement
MOSFLMdata reduction
CCP4data scaling
PHASERphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Revision History  (Full details and data files)

  • Version 1.0: 2005-08-09
    Type: Initial release
  • Version 1.1: 2008-04-30
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2012-03-14
    Changes: Database references
  • Version 1.4: 2024-03-13
    Changes: Data collection, Database references, Derived calculations