2JPT

Structural changes induced in apo-s100a1 protein by the disulphide formation between its CYS85 residue and b-mercaptoethanol


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 200 
  • Conformers Submitted: 10 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Structural and motional changes induced in apo-S100A1 protein by the disulfide formation between its Cys 85 residue and beta-mercaptoethanol

Zhukov, I.Ejchart, A.Bierzynski, A.

(2008) Biochemistry 47: 640-650

  • DOI: https://doi.org/10.1021/bi701762v
  • Primary Citation of Related Structures:  
    2JPT

  • PubMed Abstract: 

    Recently, we have shown (Goch, G., Vdovenko, S., Kozłowska, H., and Bierzyński, A. (2005) FEBS J. 272, 2557-2565) that the chemical modification of Cys 85 residue of S100A1 protein by disulfide bond formation with small thiols such as glutathione, cysteine, or beta-mercaptoethanol (betaME) leads to a dramatic increase of the protein affinity for calcium. Therefore, the biological function of S100A1 as a calcium signal transmitter is probably regulated by the redox potential within the cell. Systematic, structural studies of various mixed disulfides of S100A1 in the apo and holo states are necessary to elucidate the mechanism of this phenomenon. Using NMR methods we have determined the structure of apo-S100A1-betaME and, on the basis of 15N nuclear magnetic relaxation data, we have characterized the structural dynamics of both: modified and unmodified molecules of apo-S100A1. The following effects of betaME modification have been observed: (1) Helices IV and IV' of two protein subunits are elongated by five residues (85-89). (2) Conformation of the calcium binding N-terminal loops is dramatically changed, and structural flexibility of the N-loops as well as C-loops markedly increases. (3) The angle between helices I and IV increases by approximately 20 degrees and between helices IV and IV' decreases by approximately 35 degrees . All these observations lead to the conclusion that betaME modification of apo-S100A1 makes its structure more similar to that of holo-S100A1, so that it becomes much better adjusted for calcium coordination.


  • Organizational Affiliation

    Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Protein S100-A1
A, B
93Bos taurusMutation(s): 1 
Gene Names: S100A1
UniProt
Find proteins for P02639 (Bos taurus)
Explore P02639 
Go to UniProtKB:  P02639
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP02639
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
BME
Query on BME

Download Ideal Coordinates CCD File 
C [auth A],
D [auth B]
BETA-MERCAPTOETHANOL
C2 H6 O S
DGVVWUTYPXICAM-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 200 
  • Conformers Submitted: 10 
  • Selection Criteria: structures with the lowest energy 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2008-02-19
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2021-10-20
    Changes: Database references, Derived calculations
  • Version 1.3: 2023-12-20
    Changes: Data collection, Other