1XKV

Crystal Structure Of ATP-Dependent Phosphoenolpyruvate Carboxykinase From Thermus thermophilus HB8


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.20 Å
  • R-Value Free: 0.219 
  • R-Value Work: 0.186 
  • R-Value Observed: 0.187 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.3 of the entry. See complete history


Literature

Structure of ATP-dependent phosphoenolpyruvate carboxykinase from Thermus thermophilus HB8 showing the structural basis of induced fit and thermostability.

Sugahara, M.Ohshima, N.Ukita, Y.Sugahara, M.Kunishima, N.

(2005) Acta Crystallogr D Biol Crystallogr 61: 1500-1507

  • DOI: https://doi.org/10.1107/S090744490502651X
  • Primary Citation of Related Structures:  
    1J3B, 1XKV

  • PubMed Abstract: 

    In order to understand the induced fit and the thermostabilization mechanisms of ATP-dependent phosphoenolpyruvate carboxykinase, the crystal structure of the enzyme from the extreme thermophile Thermus thermophilus HB8 (TtPEPCK) was determined and compared with those of orthologues of known structure from two mesophilic organisms. The protomer structures in these orthologues, which exhibit open/closed interdomain conformations, are similar. Isomorphous crystals of unliganded and ATP-bound TtPEPCK were obtained. The asymmetric units of both crystal forms contain two protomers A and B with closed and open conformations, respectively. ATP was only observed in the interdomain cleft of the closed protomer, suggesting that the induced fit of TtPEPCK agrees with the so-called ;conformational selection' mechanism where ligand binding is not essential for domain closure although its binding leads to the stabilization of the closed state. A bound calcium observed in the N-terminal domain of TtPEPCK probably contributes to the thermal stability. A combination of hydrophobic effects, ion pairs and entropic effects might also contribute to the thermostability of TtPEPCK.


  • Organizational Affiliation

    Advanced Protein Crystallography Research Group, RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Sayo-gun, Hyogo 679-5148, Japan.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
ATP-dependent phosphoenolpyruvate carboxykinase
A, B
529Thermus thermophilus HB8Mutation(s): 0 
EC: 4.1.1.49
UniProt
Find proteins for Q5SLL5 (Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8))
Explore Q5SLL5 
Go to UniProtKB:  Q5SLL5
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ5SLL5
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 4 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
ATP
Query on ATP

Download Ideal Coordinates CCD File 
F [auth A]ADENOSINE-5'-TRIPHOSPHATE
C10 H16 N5 O13 P3
ZKHQWZAMYRWXGA-KQYNXXCUSA-N
PO4
Query on PO4

Download Ideal Coordinates CCD File 
D [auth A]
E [auth A]
H [auth B]
I [auth B]
J [auth B]
D [auth A],
E [auth A],
H [auth B],
I [auth B],
J [auth B],
K [auth B]
PHOSPHATE ION
O4 P
NBIIXXVUZAFLBC-UHFFFAOYSA-K
GOL
Query on GOL

Download Ideal Coordinates CCD File 
L [auth B],
M [auth B]
GLYCEROL
C3 H8 O3
PEDCQBHIVMGVHV-UHFFFAOYSA-N
CA
Query on CA

Download Ideal Coordinates CCD File 
C [auth A],
G [auth B]
CALCIUM ION
Ca
BHPQYMZQTOCNFJ-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.20 Å
  • R-Value Free: 0.219 
  • R-Value Work: 0.186 
  • R-Value Observed: 0.187 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 65.067α = 90
b = 130.548β = 90
c = 174.195γ = 90
Software Package:
Software NamePurpose
HKL-2000data collection
SCALEPACKdata scaling
CNSrefinement
HKL-2000data reduction
CNSphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2005-10-11
    Type: Initial release
  • Version 1.1: 2008-04-30
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Source and taxonomy, Version format compliance
  • Version 1.3: 2023-10-25
    Changes: Data collection, Database references, Derived calculations, Refinement description