1R1O

Amino Acid Sulfonamides as Transition-State Analogue Inhibitors of Arginase


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.80 Å
  • R-Value Free: 0.290 
  • R-Value Work: 0.251 
  • R-Value Observed: 0.251 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Design of Amino Acid Sulfonamides as Transition-State Analogue Inhibitors of Arginase

Cama, E.Shin, H.Christianson, D.W.

(2003) J Am Chem Soc 125: 13052-13057

  • DOI: https://doi.org/10.1021/ja036365b
  • Primary Citation of Related Structures:  
    1R1O

  • PubMed Abstract: 

    Arginase is a binuclear manganese metalloenzyme that catalyzes the hydrolysis of L-arginine to form L-ornithine plus urea. Chiral L-amino acids bearing sulfonamide side chains have been synthesized in which the tetrahedral sulfonamide groups are designed to target bridging coordination interactions with the binuclear manganese cluster in the arginase active site. Syntheses of the amino acid sulfonamides have been accomplished by the amination of sulfonyl halide derivatives of (S)-(tert-butoxy)-[(tert-butoxycarbonyl)amino]oxoalkanoic acids. Amino acid sulfonamides with side chains comparable in length to that of L-arginine exhibit inhibition in the micromolar range, and the X-ray crystal structure of arginase I complexed with one of these inhibitors, S-(2-sulfonamidoethyl)-L-cysteine, has been determined at 2.8 A resolution. In the enzyme-inhibitor complex, the sulfonamide group displaces the metal-bridging hydroxide ion of the native enzyme and bridges the binuclear manganese cluster with an ionized NH(-) group. The binding mode of the sulfonamide inhibitor may mimic the binding of the tetrahedral intermediate and its flanking transition states in catalysis. It is notable that the ionized sulfonamide group is an excellent bridging ligand in this enzyme-inhibitor complex; accordingly, the sulfonamide functionality can be considered in the design of inhibitors targeting other binuclear metalloenzymes.


  • Organizational Affiliation

    Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Arginase 1
A, B, C
323Rattus norvegicusMutation(s): 0 
Gene Names: ARG1
EC: 3.5.3.1
UniProt
Find proteins for P07824 (Rattus norvegicus)
Explore P07824 
Go to UniProtKB:  P07824
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP07824
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.80 Å
  • R-Value Free: 0.290 
  • R-Value Work: 0.251 
  • R-Value Observed: 0.251 
  • Space Group: P 32
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 88.94α = 90
b = 88.94β = 90
c = 112.54γ = 120
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
AMoREphasing
CNSrefinement

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2003-10-28
    Type: Initial release
  • Version 1.1: 2008-04-29
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2024-02-14
    Changes: Data collection, Database references, Derived calculations