1AME

CRYSTAL STRUCTURE OF TYPE III ANTIFREEZE PROTEIN AT 4 C


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.65 Å
  • R-Value Free: 0.282 
  • R-Value Work: 0.199 
  • R-Value Observed: 0.199 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Structure of type III antifreeze protein at 277 K.

Ye, Q.Leinala, E.Jia, Z.

(1998) Acta Crystallogr D Biol Crystallogr 54: 700-702

  • DOI: https://doi.org/10.1107/s0907444997020040
  • Primary Citation of Related Structures:  
    1AME

  • PubMed Abstract: 

    Fish antifreeze proteins (AFP's) depress the freezing point of blood and other body fluids below that of the surrounding seawater by binding to and inhibiting the growth of seed ice crystals. The high-resolution crystal structure of type III AFP, determined at room temperature, reveals a remarkably flat surface containing most of the ice-binding residues [Jia et al. (1996). Nature (London), 384, 285-288]. Since AFP's function at temperatures close to 273 K, it is important to know whether the structure determined at room temperature undergoes any change at much lower temperature. Therefore, type III AFP has been crystallized at 277 K and its structure determined. Although crystallization conditions at 277 K were similar to those at approximately 295 K, crystal growth took much longer at the lower temperature. Crystals grown at the two temperatures were isomorphous. Initial crystals appeared within 40-50 d and grew to their final size in about 8-12 months, instead of a couple of days at approximately 295 K. The type III antifreeze protein structure from crystals grown at 277 K was essentially the same as that determined at approximately 295 K, with the exception of some minor changes in side-chain conformation. The result is an indication that temperature has a minimal effect on the structure of type III AFP, thus lending increased physiological validity to the room-temperature structure which was used for the initial ice-binding modelling.


  • Organizational Affiliation

    Department of Biochemistry, Queen's University, Kingston, Ontario, K7L 3N6 Canada.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
TYPE III ANTIFREEZE PROTEIN ISOFORM HPLC 1267Zoarces americanusMutation(s): 0 
UniProt
Find proteins for P19614 (Zoarces americanus)
Explore P19614 
Go to UniProtKB:  P19614
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP19614
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.65 Å
  • R-Value Free: 0.282 
  • R-Value Work: 0.199 
  • R-Value Observed: 0.199 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 32.69α = 90
b = 38.84β = 90
c = 47.51γ = 90
Software Package:
Software NamePurpose
X-PLORmodel building
X-PLORrefinement
DENZOdata reduction
SCALEPACKdata scaling
X-PLORphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1998-06-17
    Type: Initial release
  • Version 1.1: 2008-03-24
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2023-08-02
    Changes: Database references, Other, Refinement description